Abstract

Ultra-reliability and low latency communication has long been an important but challenging task in the fifth and sixth generation wireless communication systems. Scheduling as many users as possible to serve on the limited time-frequency resource is one of a crucial topic, subjecting to the maximum allowable transmission power and the minimum rate requirement of each user. We address it by proposing a mixed integer programming model, with the goal of maximizing the set cardinality of users instead of maximizing the system sum rate or energy efficiency. Mathematical transformations and successive convex approximation are combined to solve the complex optimization problem. Numerical results show that the proposed method achieves a considerable performance compared with exhaustive search method, but with lower computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call