Abstract
AbstractThe number of independent vertex subsets is a graph parameter that is, apart from its purely mathematical importance, of interest in mathematical chemistry. In particular, the problem of maximizing or minimizing the number of independent vertex subsets within a given class of graphs has already been investigated by many authors. In view of the applications of this graph parameter, trees of restricted degree are of particular interest. In the current article, we give a characterization of the trees with given maximum degree which maximize the number of independent subsets, and show that these trees also minimize the number of independent edge subsets. The structure of these trees is quite interesting and unexpected: it can be described by means of a novel digital system—in the case of maximum degree 3, we obtain a binary system using the digits 1 and 4. The proof mainly depends on an exchange lemma for branches of a tree. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 49–68, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.