Abstract

We consider static ad-hoc wireless networks where nodes have the same initial battery charge and they may dynamically change their transmission range at every time slot. When a node v transmits with range r(v), its battery charge is decreased by β × r(v)2 where β > 0 is a fixed constant. The goal is to provide a range assignment schedule that maximizes the number of broadcast operations from a given source (this number is denoted as the length of the schedule). This maximization problem, denoted as MAX LIFETIME, is known to be NP-hard and the best algorithm yields worst-case approximation ratio Θ(log n), where n is the number of nodes of the network [5]. We consider random geometric instances formed by selecting n points independently and uniformly at random from a square of side length √n in the Euclidean plane. We first present an efficient algorithm that constructs a range assignment schedule having length, with high probability, not smaller than 1/12 of the optimum. We then design an efficient distributed version of the above algorithm where nodes initially know n and their own position only. The resulting schedule guarantees the same approximation ratio achieved by the centralized version thus obtaining the first distributed algorithm having provably-good performance for this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.