Abstract

This paper considers a reconfigurable intelligent surface (RIS)-aided network, which relies on a multiple antenna array aided base station (BS) and an RIS for serving multiple single antenna downlink users. To provide reliable links to all users over the same bandwidth and same time-slot, the paper proposes the joint design of linear transmit beamformers and the programmable reflecting coefficients of an RIS to maximize the geometric mean (GM) of the users’ rates. A new computationally efficient alternating descent algorithm is developed, which is based on closed-forms only for generating improved feasible points of this nonconvex problem. We also consider the joint design of widely linear transmit beamformers and the programmable reflecting coefficients to further improve the GM of the users’ rates. Hence another alternating descent algorithm is developed for its solution, which is also based on closed forms only for generating improved feasible points. Numerical examples are provided to demonstrate the efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.