Abstract

Kinematically redundant robots have extra degrees of freedom so that they can tolerate a joint failure and still complete an assigned task. Previous work has defined the “failure-tolerant workspace” as the workspace that is guaranteed to be reachable both before and after an arbitrary locked-joint failure. One mechanism for maximizing this workspace is to employ optimal artificial joint limits prior to a failure. This current work presents a technique for determining these optimal artificial joint limits that is based on the gradient ascent method. The proposed technique is able to deal with the discontinuities of the gradient that are due to changes in the boundaries of the failure tolerant workspace. The technique is illustrated using two examples of three degree-of-freedom planar serial robots. The first example is an equal link length robot where the optimal artificial joint limits are computed exactly. In the second example, both the link lengths and artificial joint limits are determined, resulting in a robot design that has more than twice the failure-tolerant area of previously published locally optimal designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.