Abstract

With finite density of states and electrostatically tunable work function, graphene can function as a tunable contact for a semiconductor channel to enable vertical field-effect transistors (VFETs). However, the overall performance, especially the output current density, is still limited by the low conductance of the vertical semiconductor channel, as well as large series resistance of the graphene electrode. To overcome these limitations, we construct a VFET by using single-crystal InAs film as the high-conductance vertical channel and self-aligned metal contact as the source-drain electrodes, resulting in a record high current density over 45 000 A/cm2 at a low bias voltage of 1 V. Furthermore, we construct a device-level VFET model using the resistor network method, and experimentally validate the impact of each geometry parameter on device performance. Importantly, we found the device performance is not only a function of the intrinsic channel material, but also greatly influenced by device geometries and footprint. Our study not only pushes the performance limit of graphene VFETs, but also sheds light on van der Waals integration between two-dimensional material and conventional bulk material for high-performance VFETs and circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.