Abstract

Hydrogen spillover has been studied for several decades, but its nature, catalytic functions and even its existence remain topics of vigorous debate. This is a consequence of the lack of model catalysts that can provide direct evidences of the existence of hydrogen spillover and simplify the catalytic interpretation. Here we use platinum encapsulated in a dense aluminosilicate matrix with controlled diffusional properties and surface hydroxyl concentrations to elucidate the catalytic functions of hydrogen spillover. The catalytic investigation and theoretical modelling show that surface hydroxyls, presumably Brønsted acids, are crucial for utilizing the catalytic functions of hydrogen spillover on the aluminosilicate surface. The catalysts with optimized nanostructure show remarkable activities in hydro-/dehydrogenation, but virtually no activity for hydrogenolysis. This distinct chemoselectivity may be beneficial in industrially important hydroconversions such as propane dehydrogenation to propylene because the undesired hydrogenolysis pathway producing light hydrocarbons of low value (methane and ethane) is greatly suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.