Abstract
Recently, a strong link has been discovered between supermodularity on lattices and tractability of optimization problems known as maximum constraint satisfaction problems. This paper strengthens this link. We study the problem of maximizing a supermodular function which is defined on a product of $n$ copies of a fixed finite lattice and given by an oracle. We exhibit a large class of finite lattices for which this problem can be solved in oracle-polynomial time in $n$. We also obtain new large classes of tractable maximum constraint satisfaction problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.