Abstract

MPLS recovery mechanisms are increasing in popularity because they can guarantee fast restoration and high QoS assurance. Their main advantage is that their backup paths are established in advance, before a failure event takes place. Most research on the establishment of primary and backup paths has focused on minimizing the added capacity required by the backup paths in the network. However, this so-called spare capacity allocation (SCA) metric is less practical for network operators who have a fixed capacitated network and want to maximize their revenues. In this paper we present a comprehensive study on restorable throughput maximization in MPLS networks. We present the first polynomial-time algorithms for the splittable version of the problem. For the unsplittable version, we provide a lower bound for the approximation ratio. We present efficient heuristics which are shown to have excellent performance. One of our most important conclusions is that when one seeks to maximize revenue, local recovery should be the recovery scheme of choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.