Abstract

In decentralized cognitive radio (CR) networks, establishing a link between a pair of communicating nodes requires that the radios rendezvous” in a common channel-such a channel is called a rendezvous channel-to exchange control information. When unlicensed (secondary) users opportunistically share spectrum with licensed (primary or incumbent) users, a given rendezvous channel may become unavailable due to the appearance of licensed user signals. Ideally, every node pair should be able to rendezvous in every available channel (i.e., maximize the rendezvous diversity) so that the possibility of rendezvous failures is minimized. Channel hopping (CH) protocols have been proposed previously for establishing pairwise rendezvous. Some of them enable pairwise rendezvous over all channels but require global clock synchronization, which may be very difficult to achieve in decentralized networks. Maximizing the pairwise rendezvous diversity in decentralized CR networks is a very challenging problem. In this paper, we present a systematic approach for designing CH protocols that maximize the rendezvous diversity of any node pair in decentralized CR networks. The resulting protocols are resistant to rendezvous failures caused by the appearance of primary user (PU) signals and do not require clock synchronization. The proposed approach, called asynchronous channel hopping (ACH), has two noteworthy features: 1) any pair of CH nodes are able to rendezvous on every channel so that the rendezvous process is robust to disruptions caused by the appearance of PU signals; and 2) an upper bounded time-to-rendezvous (TTR) is guaranteed between the two nodes even if their clocks are asynchronous. We propose two optimal ACH designs that maximize the rendezvous diversity between any pair of nodes and show their rendezvous performance via analytical and simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.