Abstract

SummaryApplication software execution requests, from mobile devices to cloud service providers, are often heterogeneous in terms of device, network, and application runtime contexts. These heterogeneous contexts include the remaining battery level of a mobile device, network signal strength it receives and quality‐of‐service (QoS) requirement of an application software submitted from that device. Scheduling such application software execution requests (from many mobile devices) on competent virtual machines to enhance user quality of experience (QoE) is a multi‐constrained optimization problem. However, existing solutions in the literature either address utility maximization problem for service providers or optimize the application QoS levels, bypassing device‐level and network‐level contextual information. In this paper, a multi‐objective nonlinear programming solution to the context‐aware application software scheduling problem has been developed, namely, QoE and context‐aware scheduling (QCASH) method, which minimizes the application execution times (i.e., maximizes the QoE) and maximizes the application execution success rate. To the best of our knowledge, QCASH is the first work in this domain that inscribes the optimal scheduling problem for mobile application software execution requests with three‐dimensional context parameters. In QCASH, the context priority of each application is measured by applying min–max normalization and multiple linear regression models on three context parameters—battery level, network signal strength, and application QoS. Experimental results, found from simulation runs on CloudSim toolkit, demonstrate that the QCASH outperforms the state‐of‐the‐art works well across the success rate, waiting time, and QoE. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.