Abstract

Under the assumption that uncertain coefficients corresponding to each constraint are perturbed in an ellipsoidal set, we consider the problem of maximizing the perturbation radius of the ellipsoidal set associated to a robust convex quadratically constrained quadratic programming problem to maintain some properties of a pre-decision. To this end, a fractional programming problem is first formulated to solve the problem, and then equivalently reformulated into linear conic programs over positive semi-definite, second-order cones that are solvable in polynomial time. Numerical experiments in connection with the robust Markowitz’s portfolio selection problem are provided to demonstrate the proposed concept of sensitivity analysis. Additionally, certain numerical results are also presented to compare the efficiency of direct solutions of the proposed linear conic programs with that of a bisection method for the corresponding fractional programming problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.