Abstract

Electrochemical actuators play a key role in converting electrical energy to mechanical energy. However, a low actuation stress and an unsatisfied strain response rate strongly limit the extensive applications of the actuators. Here, we report hybrid manganese dioxide (MnO2) fabricated by introducing ramsdellite (R-MnO2) and Mn vacancies into birnessite (δ-MnO2) nanosheets, which in situ grew on the surface of a nickel (Ni) film, forming a hybrid MnO2/Ni actuator. The actuator demonstrated a rapid strain response of 0.88% s-1 (5.3% intrinsic strain in 6 s) and a large actuation stress of 244 MPa owing to the special R-MnO2 with a high density of sodium ion (Na+)-accessible lattice tunnels, Mn vacancies, and also a high Young's modulus of the hybrid MnO2/Ni composite. Besides, the cyclic stability of the actuator was realized after 1.2 × 104 cycles of electric stimulation under a frequency of 0.05 Hz. The finding of the novel hybrid MnO2/Ni actuator may provide a new strategy to maximize the actuating performance evidently through tailoring the lattice tunnel structure and introducing cation vacancies into electrochemical electrode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.