Abstract

Hydrogen fuel holds promise for clean energy solutions, particularly in onboard applications such as fuel cell vehicles. However, the development of efficient hydrogen storage systems remains a critical challenge. This study addresses this challenge by exploring the potential of high-strength novel materials, including glass, to maximize onboard hydrogen storage capacity. A mathematical approach was employed to evaluate the feasibility and efficacy of various high-strength materials for hydrogen storage. This study focused on capillary arrays as a promising storage medium and utilized mathematical modeling techniques to estimate the storage capacity enhancement achievable with different materials. The analysis revealed significant variations in storage capacity enhancements in different high-strength novel materials, with glass having promising results. Glass-based materials demonstrated the potential to meet or exceed US Department of Energy (DOE) targets for both gravimetric and volumetric hydrogen storage capacities in capillary arrays. By leveraging a mathematical approach, this study identified high-strength novel materials, including glass and polymers, capable of substantially improving onboard hydrogen storage capacity: 29 wt.% with 40 g/L for quartz glass and 25 wt.% with 38 g/L for Kevlar compared to 5.2 wt.% with 26.3 g/L from a conventional type IV tank. These findings underscore the importance of material selection in optimizing hydrogen storage systems and provide valuable insights for the design and development of next-generation hydrogen storage technologies for onboard applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.