Abstract

Airports must ensure that their operations can efficiently adapt to the emerging needs considering both the passenger experience and their economic viability. One way to achieve this is by optimizing the airport operations, aiming to maximize revenue levels considering operational objectives and passenger requirements inside the airport. This study presents an original mixed-integer linear programming model (MILP), which combines the gate assignment problem with passenger behaviour modelling. First, a survey was conducted to collect relevant information to model passenger behaviour and the purchases conducted in a terminal, leading to the estimation of discrete choice models that quantify the probability that a passenger makes purchases of certain levels at the terminal according to their flight type (departure, arrival or transfer). Then, the proposed MILP model assigns gates which would expectedly increase the airport non-aeronautical revenues at the terminal airport by matching flights and passenger gate categories to the most profitable gates, considering the proximity to the retail area, the walking distance needed to get to a gate in a specified time-horizon and the operational constraints of the airport. The application to the Lisbon Airport case study showed a potential increase of 8%–12.2% in revenues corresponding to 1732.7€ and 2967.3€ in half-an-hour time slots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.