Abstract

Maximizing the utilization of noble metals is crucial for applications such as catalysis. We found that the minimum loading of platinum for optimal performance in the hydroconversion of n-alkanes for industrially relevant bifunctional catalysts could be reduced by a factor of 10 or more through the rational arranging of functional sites at the nanoscale. Intentionally depositing traces of platinum nanoparticles on the alumina binder or the outer surface of zeolite crystals, instead of inside the zeolite crystals, enhanced isomer selectivity without compromising activity. Separation between platinum and zeolite acid sites preserved the metal and acid functions by limiting micropore blockage by metal clusters and enhancing access to metal sites. Reduced platinum nanoparticles were more active than platinum single atoms strongly bonded to the alumina binder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.