Abstract
The Nash social welfare (NSW) problem is relevant not only to the economic domain but also extends its applicability to the field of computer science. However, maximizing Nash social welfare is an APX-hard problem. In this study, we propose two approaches to enhance the maximization of Nash social welfare. First, a general greedy algorithm (GA) capable of addressing the Nash social welfare problem for both agents with identical and differing valuations was presented. It is proven that the proposed algorithm aligns with the previous greedy algorithm when all agents possess identical valuations. Second, an innovative method for solving the Nash social welfare problems using evolutionary algorithms was developed. This approach integrates the Estimation of Distribution Algorithms (EDAs) with neighborhood search techniques to improve the maximization process of Nash social welfare. Finally, the proposed algorithms were implemented across a range of instances with the objective of maximizing Nash social welfare. The experimental results indicate that the approximation solutions derived from the Estimation of Distribution Algorithm outperform those obtained via the greedy algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.