Abstract

Purpose – The purpose of this paper is to investigate conditional and unconditional lifetime sequence of wireless sensor networks (WSN) that have many important practical applications. A significant limitation for WSN is its short lifetime due to the limited capacity of the battery. Renewable energy can significantly extend the lifetime of WSN. In this paper, we investigate the whole sequence of lifetimes of every sensor in WSN, as different application scenarios have different requirement on how many sensors can die until the WSN is no longer functional. Design/methodology/approach – Linear programming formulation was used to investigate both the conditional and unconditional lifetime sequence of WSN. The lifetime sequences of WSN without and with differ levels of solar power were studied. Findings – This investigation of lifetime sequences discovered three interesting phenomena: the sensors that die first are on the peripheral of the network, rather close to the base station; multiple sensors tend to die simultaneously; and the lifetimes of sensors that die later can be extended by renewable energy much more significantly than those that die early, which is very good news to applications that can tolerate the death of a fraction of sensors. Originality/value – In this paper, the first optimization formulation for maximizing both unconditional and conditional lifetime sequences of WSNs with renewable energy sources was provided. Only the conditional lifetime sequence has been investigated in a previous work, but this method runs n-times faster than the previous work, with n being the number of nodes in the WSN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call