Abstract

Many short-lived or univoltine organisms at high latitudes and altitudes face the challenge to complete their life-cycle within a brief growing season. This means that they need to maintain a high growth rate at low temperatures, and one way of doing this is to allocate limiting resources like phosphorus to RNA in order to maximize protein synthesis. We here explore the allocations of phosphorus to RNA relative to DNA, and the potential bearings on growth rate and life history traits of polyploid (high-Arctic) and diploid (temperate) Daphnia pulex. The polyploid clone matured earlier at low temperature (8°C) but later than the diploid clone at high temperature (18°C). Juveniles of Arctic Daphnia had both higher specific levels of RNA and higher growth rates at low temperature compared with the temperate clone of Daphnia. We hypothesize that Arctic Daphnia may overcome growth constraints posed by low temperature and polyploidy by increasing their allocation of resources to RNA. The prevalence of polyploidy in Arctic populations strongly suggests that the potential drawbacks of polyploidy are counteracted by an increased allocation of resources to RNA to keep a high rate of protein synthesis even under low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.