Abstract

AbstractAlthough additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non‐sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non‐sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives. A high electrostatic polarity renders sucrose the best hydrated Zn2+ desolvation ability and facilitates the MAL formation, resulting in the best cycling stability with a long‐term reversible plating/stripping cycle life of thousands of hours. This study provides theoretical guidance for the screening of optimal additives for high‐performance ZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call