Abstract

Although additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non-sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non-sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives. A high electrostatic polarity renders sucrose the best hydrated Zn2+ desolvation ability and facilitates the MAL formation, resulting in the best cycling stability with a long-term reversible plating/stripping cycle life of thousands of hours. This study provides theoretical guidance for the screening of optimal additives for high-performance ZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call