Abstract

Among the increasingly popular miniature and flexible smart electronics, two-dimensional materials show great potential in the development of flexible electronics owing to their layered structures and outstanding electrical properties. MXenes have attracted much attention in flexible electronics owing to their excellent hydrophilicity and metallic conductivity. However, their limited interlayer spacing and tendency for self-stacking lead to limited changes in electron channels under external pressure, making it difficult to exploit their excellent surface metal conductivity. We propose a strategy for rapid gas foaming to construct interlayer tunable MXene aerogels. MXene aerogels with rich interlayer network structures generate maximized electron channels under pressure, facilitating the effective utilization of the surface metal properties of MXene; this forms a self-healable flexible pressure sensor with excellent sensing properties such as high sensitivity (1,799.5 kPa-1), fast response time (11 ms), and good cycling stability (>25,000 cycles). This pressure sensor has applications in human body detection, human-computer interaction, self-healing, remote monitoring, and pressure distribution identification. The maximized electron channel design provides a simple, efficient, and scalable method to effectively exploit the excellent surface metal conduction of 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.