Abstract

The utilization of clean and renewable fuels has become increasingly significant in the power generation and transportation sectors. Dual-fuel engines that employ hydrogen and algal biodiesel are potential alternatives. This study investigated the impact of pilot fuel injection pressures and engine loads on the performance and emissions of an algal biodiesel-hydrogen dual-fuel engine. The engine was optimized using response surface methodology under various operating conditions. The highest brake thermal efficiency (28.71 %) was obtained at 240 bar pilot fuel injection pressure and 100 % engine load, significantly reducing carbon monoxide and hydrocarbon emissions. The optimum parameters were identified using response surface methodology at 67.63 % engine load and 245.48 bar pilot fuel injection pressure, with a high model fit (R2) range of 88.89 %–99.59 % and composite desirability of 96.1 %. The potential for optimizing algal biodiesel-hydrogen dual-fuel engines to achieve greater efficiency and environmental benefits is highlighted in this work, as is the relevance of applying response surface methods to optimize engine performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.