Abstract

Microwave kinetic inductance detectors (MKIDs) operate through means of a superconducting resonator that changes resonant frequency and quality factor when incident photons are absorbed in the superconducting material. Incident power on MKIDs is determined by reading out the phase and amplitude of a tone injected into each detector. However, if the incident power on an MKID changes too drastically and the resonant frequency moves too far from the probe tone, amplitude information becomes useless and the detector is effectively out of commission until a VNA sweep is used to relocate resonances. Here we present the designs and preliminary results of a tone-tracking firmware that uses phase information to maintain an on-resonance probe tone at all times, removing the need for time-intensive VNA sweeps during observations and effectively maximizing the dynamic range of MKIDs. We will conclude with a discussion on future NASA missions that hope implement this tone-tracking design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call