Abstract

We consider a downlink multi-user scenario and investigate the use of reconfigurable intelligent surfaces (RISs) to maximize the dirty-paper-coding (DPC) sum rate of the RIS-assisted broadcast channel. Different from prior works, which maximize the rate achievable by linear precoders, we assume a capacity-achieving DPC scheme is employed at the transmitter and optimize the transmit covariances and RIS reflection coefficients to directly maximize the sum capacity of the broadcast channel. We propose an optimization algorithm that iteratively alternates between optimizing the transmit covariances using convex optimization and the RIS reflection coefficients using Riemannian manifold optimization. Our results show that the proposed technique can be used to effectively improve the sum capacity in a variety of scenarios compared to benchmark schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.