Abstract

Energy harvesting (EH) and cooperative communication techniques have been widely used in cognitive radio networks. However, most studies on throughput in energy-harvesting cooperative cognitive radio networks (EH-CCRNs) are end-to-end, which ignores the overall working state of the network. For the above problems, under the premise of prioritizing the communication quality of short-range users, this paper focuses on the optimization of the EH-CCRN average throughput, with energy and transmission power as constraints. The formulated problem was an unsolved non-deterministic polynomial-time hardness (NP-hard) problem. To make it tractable to solve, a multi-user time-power resource allocation algorithm (M-TPRA) is proposed, which is based on sub-gradient descent and unary linear optimization methods. Simulation results show that the M-TPRA algorithm can improve the average throughput of the network. In addition, the energy consumed by executing the M-TPRA algorithm is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call