Abstract

This paper deals with maximization and minimization of quasiconvex functions in a finite dimensional setting. Firstly, some existence results on closed convex sets, possibly containing lines, are presented. This is given via a careful study of reduction to the boundary and/or extremality of the feasible set. Necessary or sufficient optimality conditions are derived in terms of radial epiderivatives. Then, the problem of minimizing quasiconvex functions are analyzed via asymptotic analysis. Finally, some attempts to define asymptotic functions under quasiconvexity are also outlined. Several examples illustrating the applicability of our results are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.