Abstract

We present an approach to hierarchically encode the topology of functions over triangulated surfaces. Its Morse-Smale complex, a well known structure in computational topology, describes the topology of a function. Following concepts of Morse theory, a Morse-Smale complex (and therefore a function's topology) can be simplified by successively canceling pairs of critical points. We demonstrate how cancellations can be effectively encoded to produce a highly adaptive topology-based multi-resolution representation of a given function. Contrary to the approach, we avoid encoding the complete complex in a traditional mesh hierarchy. Instead, the information is split into a new structure we call a cancellation forest and a traditional dependency graph. The combination of this new structure with a traditional mesh hierarchy proofs to be significantly more flexible than the one previously reported. In particular, we can create hierarchies that are guaranteed to be of logarithmic height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.