Abstract

Platooning allows vehicles to travel with a small intervehicle distance in a coordinated fashion because of vehicle-to-vehicle connectivity. When applied at a larger scale, platooning creates significant opportunities for energy savings because of reduced aerodynamic drag, as well as increased road capacity and a reduction in congestion resulting from shorter vehicle headways. These potential savings are maximized, however, if platooning-capable vehicles spend most of their travel time within platoons. Ad hoc platoon formation may not ensure a high rate of platoon driving. This paper considers the problem of central coordination of platooning-capable vehicles. Coordination of their routes and departure times can maximize the fuel savings afforded by platooning vehicles. The resulting problem is a combinatorial optimization problem that considers the platoon coordination and vehicle routing problems simultaneously. The methodology is demonstrated through evaluation of the benefits of a coordinated solution and comparison with the uncoordinated case when platoons form only in an ad hoc manner. The coordinated and uncoordinated scenarios are compared on a grid network with various assumptions about demand and the time vehicles are willing to wait.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.