Abstract
This paper concerns minimization and maximization of the energy integral in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the equilibrium configuration of a non-homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to maximize or minimize the energy integral of the corresponding plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.