Abstract

The subject of this paper is the synthesis of natural projections that serve as nonblocking and maximally permissive abstractions for the hierarchical and decentralized control of large-scale discrete event systems. To this end, existing concepts for nonblocking abstractions such as natural observers and marked string accepting (msa)-observers are extended by local control consistency (LCC) as a novel sufficient condition for maximal permissiveness. Furthermore, it is shown that, similar to the natural observer condition and the msa-observer condition, also LCC can be formulated in terms of a quasi-congruence. Based on existing algorithms in the literature, this allows to algorithmically compute natural projections that are either natural observers or msa-observers and that additionally fulfill LCC. The obtained results are illustrated by the synthesis of nonblocking and maximally permissive supervisors for a manufacturing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call