Abstract

We review the formalisms of the self-consistent GW approximation to many-body perturbation theory and of the generation of optimally localized Wannier functions from groups of energy bands. We show that the quasiparticle Bloch wave functions from such GW calculations can be used within this Wannier framework. These Wannier functions can be used to interpolate the many-body band structure from the coarse mesh of Brillouin-zone points on which it is known from the initial calculation to the usual symmetry lines, and we demonstrate that this procedure is accurate and efficient for the self-consistent GW band structure. The resemblance of these Wannier functions to the bond orbitals discussed in the chemical community led us to expect differences between density-functional and many-body functions that could be qualitatively interpreted. However, the differences proved to be minimal in the cases studied. Detailed results are presented for ${\text{SrTiO}}_{3}$ and solid argon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.