Abstract

Random K-satisfiability (K-SAT) is a paradigmatic model system for studying phase transitions in constraint satisfaction problems and for developing empirical algorithms. The statistical properties of the random K-SAT solution space have been extensively investigated, but most earlier efforts focused on solutions that are typical. Here we consider maximally flexible solutions which satisfy all the constraints only using the minimum number of variables. Such atypical solutions have high internal entropy because they contain a maximum number of null variables which are completely free to choose their states. Each maximally flexible solution indicates a dense region of the solution space. We estimate the maximum fraction of null variables by the replica-symmetric cavity method, and implement message-passing algorithms to construct maximally flexible solutions for single K-SAT instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.