Abstract

The maximal values of the Auger amplitudes corresponding to transitions of the type n1l14l1 + 1 n2l2N → n1l14l1 + 2n2l2N - 2εlj are investigated. It is shown that the maximal values of amplitudes vary within a relatively narrow interval and rather smoothly with N. Though the amplitude has a complicated expression for the considered transitions the quantum numbers of its maximal values obey rather general and strict propensity rules. They are also established for the quantum numbers of the initial and final states. It is shown that these rules are mainly determined by the two-electron fractional parentage coefficients. The existence of such rules indicates the additional properties of the interconfiguration matrix elements of the Coulomb interaction operator. The experimental data for the Auger spectra of atoms with closed shells confirm the validity of these rules for the determination of the most intensive line in the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call