Abstract
Let $X_0$ be a smooth geometrically connected variety defined over a finite field $\mathbb F_q$ and let $\mathcal E_0^{\dagger}$ be an irreducible overconvergent $F$-isocrystal on $X_0$. We show that if a subobject of minimal slope of the associated convergent $F$-isocrystal $\mathcal E_0$ admits a non-zero morphism to $\mathcal O_{X_0}$ as a convergent isocrystal, then $\mathcal E_0^{\dagger}$ is isomorphic to $\mathcal O^{\dagger}_{X_0}$ as an overconvergent isocrystal. This proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of the monodromy group of $\mathcal E_0^{\dagger}$ and the subgroup defined by $\mathcal E_0$. The new input in this setting is that the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness result for the torsion points of abelian varieties, which extends the previous theorem of Lang--N\'eron and answers positively a question of Esnault.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.