Abstract

We prove a maximal velocity bound for the dynamics of Markovian open quantum systems. The dynamics is described by one-parameter semigroups of quantum channels satisfying the von Neumann–Lindblad equation. Our result says that dynamically evolving states are contained inside a suitable light cone up to polynomial errors. We also give a bound on the slope of the light cone, i.e. the maximal propagation speed. The result implies an upper bound on the speed of propagation of local perturbations of stationary states in open quantum systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.