Abstract

In the past two decades, Sorin Popa's breakthrough deformation/rigidity theory has produced remarkable rigidity results for von Neumann algebras $M$ which can be deformed inside a larger algebra $\widetilde M \supseteq M$ by an action $\alpha: \mathbb{R} \to {\rm Aut}(\widetilde M)$, while simultaneously containing subalgebras $Q$ {\it rigid} with respect to that deformation, that is, such that $\alpha_t \to {\rm id}$ uniformly on the unit ball of $Q$ as $t \to 0$. However, it has remained unclear how to exploit the interplay between distinct rigid subalgebras not in specified relative position. We show that in fact, any diffuse subalgebra which is rigid with respect to a mixing s-malleable deformation is contained in a subalgebra which is uniquely maximal with respect to being rigid. In particular, the algebra generated by any family of rigid subalgebras that intersect diffusely must itself be rigid with respect to that deformation. The case where this family has two members was the motivation for this work, showing for example that if $G$ is a countable group with $\beta^{1}_{(2)}(G) > 0$, then $L(G)$ cannot be generated by two property $(T)$ subalgebras with diffuse intersection; however, the result is most striking when the family is infinite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call