Abstract

We investigate the time-periodic Stokes equations with non-homogeneous divergence data in the whole space, the half space, bent half spaces and bounded domains. The solutions decompose into a well-studied stationary part and a purely periodic part, for which we establish $\mathrm{L}^{p}$ estimates. For the whole space and the half space case we use a reduction of the Stokes equations to $(n-1)$ heat equations. Perturbation and localisation methods yield the result on bent half spaces and bounded domains. A one-to-one correspondence between maximal regularity for the initial value problem and time periodic maximal regularity is proven, providing a short proof for the maximal regularity of the Stokes operator avoiding the notion of $\mathcal{R}$-boundedness. The results are applied to a quasilinear model governing the flow of nematic liquid crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.