Abstract

We consider the question of L p -maximal regularity for inhomogeneous Cauchy problems in Banach spaces using operator-valued Fourier multipliers. This follows results by L. Weis in the continuous time setting and by S. Blunck for discrete time evolution equations. We generalize the later result to the case of some discrete time scales (discrete problems with nonconstant step size). First we introduce an adequate evolution family of operators to consider the general problem. Then we consider the case where the step size is a periodic sequence by rewriting the problem on a product space and using operator matrix valued Fourier multipliers. Finally we give a perturbation result allowing to consider a wider class of step sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.