Abstract
AbstractLet A and M be closed linear operators defined on a complex Banach space X and let a ∈ L1(ℝ+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equationwith initial condition Mu(0) = Mu(2π), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel–Lizorkin and Lebesgue vector-valued function spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.