Abstract

We consider the problem of determining the maximum value of the point-polyserial correlation between a random variable with an assigned continuous distribution and an ordinal random variable with categories, which are assigned the first natural values , and arbitrary probabilities . For different parametric distributions, we derive a closed-form formula for the maximal point-polyserial correlation as a function of the and of the distribution's parameters; we devise an algorithm for obtaining its maximum value numerically for any given . These maximum values and the features of the corresponding -point discrete random variables are discussed with respect to the underlying continuous distribution. Furthermore, we prove that if we do not assign the values of the ordinal random variable a priori but instead include them in the optimization problem, this latter approach is equivalent to the optimal quantization problem. In some circumstances, it leads to a significant increase in the maximum value of the point-polyserial correlation. An application to real data exemplifies the main findings. A comparison between the discretization leading to the maximum point-polyserial correlation and those obtained from optimal quantization and moment matching is sketched.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.