Abstract
The notion of the maximal pattern complexity of words was introduced by Kamae and Zamboni. In this paper, we obtain an almost exact formula for the maximal pattern complexity $p^*_\alpha(k)$ of Toeplitz words $\alpha$ on an alphabet ${\mathbb A}$ defined by a sequence of coding words $(\eta^{(n)})^\infty\in({\mathbb A}\cup\{?\})^{\mathbb N}(n=1,2,\dotsc)$ including just one ‘?’ in their cycles $\eta^{(n)}$ . Using this formula, we characterize pattern Sturmian words (i.e. $p^*_\alpha(k)=2k$ (for all $k$ )) in this class. Moreover, we give a characterization of simple Toeplitz words in the sense of Kamae and Zamboni in terms of pattern complexity. In the case where $\eta^{(1)}=\eta^{(2)}=\dotsb$ , we obtain the value $\lim_{k\to\infty}p_\alpha^*(k)/k$ . We construct a Toeplitz word $\alpha\in{\mathbb A}^{\mathbb N}$ with $\#\A=2$ such that $p^*_\alpha(k)=2^k~(k=1,2,\dotsc)$ , while Toeplitz words in our sense always have discrete spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.