Abstract

This study measured changes in maximal voluntary contraction (MVC) force, percentage maximal activation, maximal surface EMG, M-wave amplitude and average motor unit firing rates during the initial 3 weeks of isometric resistance training of the quadriceps muscle. Ten men participated in a resistance training programme three times a week for 3 weeks and 10 men participated as a control group. In the training group, MVC increased by 35% (from 761 +/- 77 to 1031 +/- 78 N) by the end of the 3 weeks. There were no changes in mean motor unit firing rates during submaximal or maximal voluntary contractions of 50 (15.51 +/- 1.48 Hz), 75 (20.23 +/- 1.85 Hz) or 100% MVC (42.25 +/- 2.72 Hz) with isometric resistance training. There was also no change in maximal surface EMG relative to the M-wave amplitude. However, there was a small increase in maximal activation (from 95.7 +/- 1.83 to 98.44 +/- 0.66%) as measured by the twitch interpolation technique. There were no changes in any of the parameters measured in the control group. It is suggested that mechanisms other than increases in average motor unit firing rates contributed to the increase in maximal force output with resistance training. Such mechanisms may include a combination of increased motor unit recruitment, enhanced protein synthesis, and changes in motor unit synchronization and muscle activation patterns across the quadriceps synergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.