Abstract
An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every n-vertex graph has at most 10n/5≈1.5849n maximal induced matchings, and this bound is the best possible. We prove that every n-vertex triangle-free graph has at most 3n/3≈1.4423n maximal induced matchings; this bound is attained by every disjoint union of copies of the complete bipartite graph K3, 3. Our result implies that all maximal induced matchings in an n-vertex triangle-free graph can be listed in time O(1.4423n), yielding the fastest known algorithm for finding a maximum induced matching in a triangle-free graph.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.