Abstract
Maximal oxygen pulse (O(2) pulse) mirrors the stroke volume response to exercise, and should therefore be a strong predictor of mortality. Limited and conflicting data are, however, available on this issue. Nine hundred forty-eight participants, classified as those with cardiopulmonary disease (CPD) and those without (non-CPD), underwent cardiopulmonary exercise testing (CPX) for clinical reasons between 1993 and 2003. The ability of maximal O(2) pulse and maximal oxygen uptake (peak VO(2)) to predict mortality was investigated using proportional hazards and Akaike information criterion analyses. All-cause mortality was the endpoint. Over a mean follow-up of 6.3+/-3.2 years, there were 126 deaths. Maximal O(2) pulse, expressed in either absolute or relative to age-predicted terms, and peak VO(2) were significant and independent predictors of mortality in those with and without CPD (P<0.04). Akaike information criterion analysis revealed that the model including both maximal O(2) pulse and peak VO(2) had the highest accuracy for predicting mortality. The optimal cut-points for O(2) pulse and peak VO(2) (<12; > or =12 ml/beat and <16; > or =16 ml/(kg.min) respectively) were established by the area under the receiver-operating-characteristic curve. The relative risks of mortality were 3.4 and 2.2 (CPD and non-CPD, respectively) among participants with both maximal O(2) pulse and peak VO(2) responses below these cut-points compared with participants with both responses above these cut-points. These results indicate that maximal O(2) pulse is a significant predictor of mortality in patients with and without CPD. The addition of absolute and relative O(2) pulse data provides complementary information for risk-stratifying heterogeneous participants referred for CPX and should be routinely included in the CPX report.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Cardiovascular Prevention & Rehabilitation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.