Abstract

We analyse the Transfer Principle, which is used to generate weak type maximal inequalities for ergodic operators, and extend it to the general case of σ-compact locally compact Hausdorff groups acting measure-preservingly on σ-finite measure spaces. We show how the techniques developed here generate various weak type maximal inequalities on different Banach function spaces, and how the properties of these function spaces influence the weak type inequalities that can be obtained. Next we demonstrate how the techniques developed imply almost sure pointwise convergence of a wide class of ergodic averages. In closing we briefly indicate the utility of these results for Statistical Physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.