Abstract
Maximization of the entropy rate is an important issue to design diffusion processes aiming at a well-mixed state. We demonstrate that it is possible to construct maximal-entropy random walks with only local information on the graph structure. In particular, we show that an almost maximal-entropy random walk is obtained when the step probabilities are proportional to a power of the degree of the target node, with an exponent α that depends on the degree-degree correlations and is equal to 1 in uncorrelated graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.