Abstract

We prove that the group of Hamiltonian automorphisms of a symplectic $4$-manifold $(M,\omega)$, Ham$(M,\omega)$, contains only finitely many conjugacy classes of maximal compact tori with respect to the action of the full symplectomorphism group Symp$(M,\omega)$. We also consider the set of conjugacy classes of\/ $2$-tori in Ham$(M,\omega)$ with respect to Hamiltonian conjugation and show that its finiteness is equivalent to the finiteness of the symplectic mapping class group $\pi_{0}$(Symp$(M,\omega)$). Finally, we extend to rational and ruled manifolds a result of Kedra which asserts that if $(M,\omega)$ is a simply connected symplectic $4$-manifold with $b_{2}\geq 3$, and if $(\widetilde{M},\widetilde{\omega}_{\delta})$ denotes a symplectic blow-up of $(M,\omega)$ of small enough capacity $\delta$, then the rational cohomology algebra of the Hamiltonian group Ham($\widetilde{M},\widetilde{\omega}_{\delta})$ is not finitely generated. Our results are based on the fact that in a symplectic $4$-manifold endowed with any tamed almost structure $J$, exceptional classes of minimal symplectic area are $J$-indecomposable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.