Abstract

Smartphone technology provides new opportunities for recording standardized voice samples of patients and transmitting the audio files to the voice laboratory. This drastically improves the achievement of baseline designs, used in research on efficiency of voice treatments. However, the basic requirement is the suitability of smartphones for recording and digitizing pathologic voices (mainly characterized by period perturbations and noise) without significant distortion. In a previous article, this was tested using realistic synthesized deviant voice samples (/a:/) with three precisely known levels of jitter and of noise in all combinations. High correlations were found between jitter and noise to harmonics ratio measured in (1) recordings via smartphones, (2) direct microphone recordings, and (3) sound files generated by the synthesizer. In the present work, similar experiments were performed (1) in the presence of increasing levels of ambient noise and (2) using synthetic deviant voice samples (/a:/) as well as synthetic voice material simulating a deviant short voiced utterance (/aiuaiuaiu/). Ambient noise levels up to 50 dBA are acceptable. However, signal processing occurs in some smartphones, and this significantly affects estimates of jitter and noise to harmonics ratio when formant changes are introduced in analogy with running speech. The conclusion is that voice material must provisionally be limited to a sustained /a/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.