Abstract

Max-C and min-D projection auto-associative fuzzy morphological memories (max-C and min-D PAFMMs) are two-layer feedforward fuzzy morphological neural networks designed to store and retrieve finite fuzzy sets. This paper addresses the main features of these auto-associative memories: unlimited absolute storage capacity, fast retrieval of stored items, few spurious memories, and excellent tolerance to either dilative or erosive noise. Particular attention is given to the so-called Zadeh’ PAFMM, which exhibits the most significant noise tolerance among the max-C and min-D PAFMMs besides performing no floating-point arithmetic operations. Computational experiments reveal that Zadeh’s max-C PFAMM, combined with a noise masking strategy, yields a fast and robust classifier with a strong potential for face recognition tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.